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LETTER TO THE EDITOR 

Amplitude modes in cis-(CH),: second-order resonance 
Raman scattering 

F Cotert, E Ehrenfreundt and B Horovitz$ 
t. Physics Department and Solid State Institute, Technion-Israel Institute of Technology, 
Haifa, Israel 
$ Physics Department, Ben-Gurion University, Beersheba, Israel 

Received 19 October 1989 

Abstract. The amplitude mode formalism is used to account simultaneously for the first- 
and second-order resonance Raman scattering in cis-(CH),. The Raman cross-section is 
calculated assuming one-dimensional semiconducting band structure with finite electronic 
lifetimes. The strong overtone structure is the sharply peaked dynamic conductivity and its 
derivatives. Contrary to previous suggestions, no gap states are needed to explain the strong 
multiphonon Raman cross-section. 

The Raman active vibrational A, modes in trans-(CH), were shown to be coupled to the 
n-electrons and to be described as amplitude modes of the dimerisation gap [ 1,2] which 
is associated with the bond alternation pattern. The intermode couplings and their 
relations to the gap could be verified using the unique dispersion property of the resonant 
Raman scattering (RRS) spectrum of trans-(CH),. As the laser excitation energy, wL, is 
increased the first-order RRS frequencies of the three A, modes shift upward and their 
relative intensities change [3]. This feature provides unique interrelation between the 
vibrational modes, which is fully accounted for by the amplitude modes model [l, 2,4] .  

The amplitude mode model was also applied to non-degenerate ground state systems 
where the electronic gap has an extrinsic contribution [5]. In systems such as polythio- 
phene [6,7], the unique relation between the Raman active A, modes and the doping- 
induced, or photoinduced, infrared active vibrations (IRAV) provides the evidence for 
the existence of amplitude modes. In the case of the non-degenerate ground state system 
cis-(CH), [S, 91, the parameters are less contained in view of the absence of IRAV modes 
and the lack of dispersion. 

Multiphonon RRS of cis-(CH), and cis-(CD), were reported by several groups 
[lo, 111. Unlike in the case for trans-(CH),, strong second- and higher-order RRS lines 
were observed. This strong series of overtones was taken as an indication for strong 
lattice relaxation due to localised intragap defects [9, 111. 

In this letter we show that the multiphonon overtones may be fully accounted for by 
the amplitude mode formalism for a Peierls-like model. There is no need for localised 
intragap defects to explain the strong overtones. We show that for a strictly one- 
dimensional ( 1 ~ )  system the overtones are infinitely strong; finite overtone intensity can 
result from finite electronic lifetime effects. 
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In this section, we evaluate the Raman cross-section for the Peierls model. We derive 
the results in the adiabatic limit, o wL, by taking the derivatives of the frequency 
dependent electronic conductivity, a ( w )  [12]. 

The amplitude modes yield a time dependent modulation of the gap of the form 
A + s( t ) ,  d(t) -=s A. Since this time variation is slow (the adiabatic limit) one may 
consider the electronic conductivity of frequency wL to be time dependent with the form 
a(wL, A + s(t)): 

a(#,, A + 6(t)) = a ( w L ,  A) + (da/dA)d(t) + h(d2a/dA2)d2(t) + . . .. (1) 

The nth term of this series represents the n-phonon Raman scattering with the cross- 
section proportional to l d " ~ / d A " / ~ .  

The cross-section for the first-order Raman process was derived previously [13]: 

a(') = - ( o t / c 4 )  sin2 6')da/dA/* Im D ( o )  (2) 
where 6' is the angle between the chain direction and the light polarisation and D ( w )  is 
the dressed phonon propagator 

D ( w )  = 2AD,(o)/N(O)[l + (1 - 2i)D&)]. (3) 
In equation (3) N(0)  is the density of states at the Fermi level and Do(w) is given by 

where are the bare mode frequencies, yn is the natural phonon width and A, is the 
dimensionless electron-phonon coupling constant for the nth mode, with A = EA,. As 
can be seen from equations (2) and ( 3 ) ,  the first-order RRS frequencies are the solutions 
of 

ReDo(w) = -l/(l - 2 i )  ( 5 )  
where 2 i  is the renormalised force constant due to the n-electrons [l, 41. 

The expansion (1) assumes just the adiabatic condition, while electron-electron 
interactions are included in ~ ( w ) .  To obtain a tractable expression for the resonance 
effect (K da(wL, A)/dA) we assume the Peierls model (not electron-electron inter- 
actions) for which a( w) = ao( w) [ 141 

ao(w) = (w~/4zio)(g(w,  A) - 1) (6) 

where w p  = (4ne2v~N(0))'/ ' is the plasma frequency. For linear dispersion E = hvFk,  
the function g is given by [ 131 

where E = ( E *  + A2)ll2,  2A is the gap, u F  the Fermi velocity and E, = hu FkF is the cut- 
off energy (= the bandwidth). For infinitely long electronic lifetime, r+  0 and the nth 
derivative d"ao/d An diverges at wL = 2A, thus predicting infinitely strong multiphonon 
RRS. In real systems, however, the RRS intensity is finite due to either finite Tor 3D effects 
such as interchain coupling. In previous treatments [2,4] of first-order RRS, 3~ effects 
were taken into account by arbitrarily cutting off the function /dao/dA12 near wL/2A = 
1 to allow for finite cross-section. This procedure does not, however, yield higher-order 
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Figure 1. The functions (a )  l a ~ , / a A 1 ~  and ( b )  la2ao/aA212 versus wL/2A for r /2A = 0.2. 

RRS since higher-order derivatives are grossly distorted. Here, instead, we take into 
account the effect of finite lifetime in the Peierls model by allowing r > 0 in equation 
(7). When this is done the integral (7)  and its derivatives are finite at wL = 2A and may 
be directly calculated. The function g is then given by 

g(wL ,  A) = [1/2B(1 + A)]{ln[i(xo - B)] - ln[i(xo + B)]} (8) 
where A = ( w ~ / ~ A ) ~  - (r /2A)2  - 1 + iwLr /2A2 ,  B = [A/(A + 1)]'12 (ImB > 0), 
x o  = sin(tan-'(E,/A)) = 1 and In z = k / z l  + i arg z ( -n /2  < arg z < n/2)  is the com- 
plexlogarithm. Using theseresults, we havecalculated the function ~~andi tsder ivat ives .  
The function /aao/aA/2  is plotted in figure l(a) for r/2 = 0.2. Note that l a ~ , / a A / ~  does 
not diverge, as is the case for = 0 [13], but has instead a strong peak near resonance 
at oL = 2A.  

The cross-section for the second-order Raman scattering corresponds to the diagram 
in figure 2 . More generally, it can be derived from the currentj(2) due to an electric field 
Eo and the last term in equation (1) 

(9) 

We expand 6( t )  = Z m a m 6 ,  exp(iw,t) in the normal modes 6, of the interactingsystem 
with eigenfrequencies U, and use (6 ,  is the Dirac delta function) 

Im D ( W )  = n l ~ , t j , 1 ~  a,(@, - 01. 
m 

The radiated power ( cz lj(o)I2) then yields the cross-section 

Figure 2 corresponds to the Peierls model with a(w)  = ao(w). 
Equation (11) contain two main factors. The first is a phononic convolution of 

Im D ( w ' )  and Im D ( o  - U ' )  [15]. It gives rise to strong peaks at all frequencies w which 
are, as expected, the sums of two first-order Raman frequencies. The second factor is 
la2u/a A2I2 which determines the resonance enhancement of the second-order cross- 
section. The function /a2ao/aA212, the resonance enhancement for the Peierls model, is 
shown in figure l (b) ,  again showing a strong peak near wL = 2A.  
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Figure 3. First-order RRS in cis-(CH),: ( a )  
measured[lO]; (b)calculated; and(c) the function 
&(o). 6 indicates the RRS of trans-(CH), present 
in the cis-(CH), samples. The horizontal line in 
(c) gives the value of -(1 - 2 A - l  appropriate for 
cis-(CH),; its intersections with the three 
branches of Do(w)  give the RRS frequencies. The 
slopes at the intersections are inversely pro- 
portional to the relative intensities. 
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Figure 4. First- and second-order RRS spectra: ( a )  
measured [lo], and (b) calculated for r/2A = 0.2. 
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Table 1. A comparison between relative intensities of first- and second-order RRS in cis- 
(CH),. The experimental values were taken from [ lo]. The fundamental line frequencies 
are: w I  = 910cm- ' ,  w 2  = 1250cm-I and w 3  = 1540cm-I. 20 ,  and w I  + 0) are not well 
resolved, so the sum of their intensities is given in the table. For the overall intensity 
agreement between first and second order see figure 4. 

First order Second order 

w ,  o2 oj 212, w , + w ,  w , + o 3 a n d 2 w 2  w 2 + w 3  2w, 

Experiment 0.18 0.66 1.00 0.070 0.55 1.72 1.72 1.00 
Calculation 0.27 0.96 1.00 0.064 0.45 1.35 1.84 1.00 

The ratio, Rl2,  of the strength of the second- to first-order RRS is dominated mainly 
by r. For r-. 0, RI* diverges and multiphonon processes are stronger than the first- 
order process. For finite r the efficiency of the second-order scattering decreases roughly 
as R I 2  = r-" with a = 2. Second-order RRS yields, thus, an indication about the par- 
ameter r in the damped Peierls model. 

A typical first-order RRS spectrum of cis-(CH), is shown in figure 3. As in the trans 
isomer, it is characterised by three resonantly enhanced lines. But unlike trans-(CH),, 
here the lines are sharp and do not shift with the laser wavelength. The intensities of 
these lines are affected by the strong luminescence (centred at 1.1.9 eV) and the vibronic 
structure on the absorption curve. Since our amplitude mode analysis does not take 
these effects into account, we have chosen a spectrum where these effects are minimal. 
In this way we were able to find a function D,(o)  that can fit simultaneously the 
frequencies and the relative intensities of the first-order RRS at an excitation wavelength 
A L =  4880 A, where there is no observed luminescence. D,(o)  is shown in figure 3 
together with the calculated spectrum based on equation (2). The overall agreement 
with the measured spectra is very good. 

Starting from the above D o ( o ) ,  we have calculated the second-order spectrum using 
equation (10) with as the single free parameter. Figure 4 shows the result of the 
calculation for r/2A = 0.2, while table 1 gives the relative intensities of the various lines. 
As can be seen, the fit gives very good agreement for the second-order frequencies and 
relative intensities. 

Note, however, that the ratio between the strengths of the second- to first-order RRS 
(RI*)  is very sensitive to the state of isomerisation of cis-(CH),. Samples of cis-(CH), 
are never 100% cis, and R I 2  strongly decreases with the trans content, and with the 
amount of defects. Therefore, the value r/2A = 0.2 found above is probably an over- 
estimate in which the effect of interchain coupling interactions is also contained. The 
value of r/2A for completely isomerised cis-(CH), may be considerably smaller than 
0.2. 

In conclusion, the strong second-order (and presumably higher-order) RRS in con- 
jugated polymers can be explained simply by their i~ nature. The strength of the second- 
order spectrum can be related to the finite electronic lifetime, h / r .  Good results are 
obtained for cis-(CH),, without involving any intragap defect states needed in previous 
treatments [9, 111 to account for the strong overtone structure. 

This work was supported by the US-Israel Binational Science Foundation (BSF), Jeru- 
salem, Israel. 
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